Finite element method for subsurface hydrology using a mixed explicit-implicit scheme
نویسندگان
چکیده
منابع مشابه
Finite Element Method for Subsurface Hydrology Using a Mixed Explicit-Implicit Scheme
The mixed explicit-implicit Galerkin finite element method developed previously by the authors is shown to be ideally suited for a wide class of problems arising in subsurface hydrology. These problems include confined saturated flow, unconfined flow under free surface conditions subject to the Dupuit assumption, flow in aquifers which are partly confined and partly unconfined, axisymmetric flo...
متن کاملExplicit Multistep Mixed Finite Element Method for RLW Equation
and Applied Analysis 3 Table 1: Solitary wave Amp. 0.3 and the errors in L2 and L∞ norms for u, Q 1 , Q 2 , and Q 3 at t = 20, h = 0.125, Δt = 0.1, and −40 ≤ x ≤ 60. Method Time Q 1 Q 2 Q 3 L 2 for u L∞ for u Our method 0 3.9797 0.8104 2.5787 0 0 4 3.9797 0.8104 2.5786 3.6304e − 004 5.2892e − 005 8 3.9797 0.8104 2.5786 7.2873e − 004 5.8664e − 005 12 3.9797 0.8104 2.5787 1.0817e − 003 6.3283e − ...
متن کاملA mixed implicit-explicit finite difference scheme for heat transport in magnetised plasmas
An explicit/implicit domain decomposition method is applied to the time-dependent heatconduction problem in a 2-d, strongly anisotropic medium (a magnetized plasma), using a formulation of the spatial derivatives which avoids the pollution of perpendicular by parallel heat fluxes. The time-stepping at the sub-domain boundaries is done using a DuFort-Frankel scheme, which leads to a time step li...
متن کاملA Mixed Finite Element Method for Constraining
The contribution of our paper is to present a mixed finite element method for 4 estimation of the velocity in the optical flow constraint, i.e., an advection equation. The resulting 5 inverse problem is well-known to be undetermined because the velocity vector cannot be recovered 6 from the scalar field advected unless further restrictions on the flow, or motion are imposed. If 7 we suppose, fo...
متن کاملImplicit-explicit multistep finite element methods for nonlinear parabolic problems
We approximate the solution of initial boundary value problems for nonlinear parabolic equations. In space we discretize by finite element methods. The discretization in time is based on linear multistep schemes. One part of the equation is discretized implicitly and the other explicitly. The resulting schemes are stable, consistent and very efficient, since their implementation requires at eac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Water Resources Research
سال: 1978
ISSN: 0043-1397
DOI: 10.1029/wr014i005p00863